2014년 9월 16일 화요일

caffe 설치와 실행

caffe 설치와 실행

An Open Source Convolutional Architecture for Fast Feature Embedding

 영어, git project, CUDA, Ubuntu에 대해서 익숙하시다면 곧 바로 caffe git hub페이지로 가셔도 좋습니다.


 버전관리 툴을 사용하고 계신다면 git에 대해서 생소하지 않으실 겁니다. open source기반의 VCS는 CVS, Subversion을 거쳐 현재는 git이 대세로 굳어지는 것처럼 느껴집니다.

 git에 대한 한국어 입문을 위한 페이지는 다음을 참조하시기 바랍니다.


 여기에서는 우분투 14.04LTS에 Matlab 2013b가 설치된 환경을 가정합니다.

 사전 설치가 필요한 것들
  • BLAS(ATLAS)
    • sudo apt-get install libatlas-base-dev
  • OpenCV
  • glog, gflags, protobuf, leveldb, snappy, hdf5, lmdb
    • sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler
  1. git clone 생성

    명령으로 로컬 저장소에 복제본을 생성합니다.
    export CAFFE_ROOT=$pwd
  1. MATLAB wrapper 설정

    CAFFE_ROOTMakefile.config에서 MATLAB_DIR을 현재 설치된 경로로 수정
  1. compile

    make all
    make test
    make runtest
정상적으로 cuda가 설치 되었다면 nvcc로 컴파일된 모듈에 대한 정상적인 테스트가 완료됩니다.

  1. MATLAB wrapper 정상 동작 확인

MATLAB을 실행시키고 $CAFFE_ROOT/matlab/caffe 로 이동
matcaffe_init.m을 실행시키면 modelprototxt파일이 없다고 나옵니다.
model은 학습을 통해서 얻은 가중치와 CNN필터의 값입니다. prototxtCNN이 어떻게 구성되어 있는지 description해주는 파일입니다.
$CAFFE_ROOT/examples/imagenet 으로 이동
get_caffe_reference_imagenet_model.sh 파일을 실행시켜 model 파일을 받아옵니다.
$CAFFE_ROOT/matlab/caffe/matcaffe_initmatcaffe_demo를 실행시켜봅니다.
matcaffe_demoILSVRC1000개의 물체에 대한 object classification demo 입니다.


댓글 없음:

댓글 쓰기